Burkholderia pseudomallei type III secretion system cluster 3 ATPase BsaS, a chemotherapeutic target for small-molecule ATPase inhibitors.
نویسندگان
چکیده
Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis.
منابع مشابه
Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase
Yersinia pestis is a gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain...
متن کاملDesign of small molecule inhibitors of type III secretion system ATPase EscN from enteropathogenic Eecherichia coli
Enteropathogenic E. coli (EPEC) is a human pathogen using type III secretion system for delivery of proteins directly into the human host. The system contains a single ATPase, EscN, which is essential for uncoupling of proteins from their complexes with chaperones before the delivery. The structure of EscN ATPase (PDB code: 2obm) was used to screen computationally for small molecule inhibitors ...
متن کاملDesign of small molecule inhibitors of type III secretion system ATPase EscN from enteropathogenic Escherichia coli.
Enteropathogenic E. coli (EPEC) is a human pathogen using type III secretion system for delivery of proteins directly into the human host. The system contains a single ATPase, EscN, which is essential for uncoupling of proteins from their complexes with chaperones before the delivery. The structure of EscN ATPase (PDB code: 2obm) was used to screen computationally for small molecule inhibitors ...
متن کاملMolecular architecture of the N‐type ATPase rotor ring from Burkholderia pseudomallei
The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N-type rotary ATPase, in addition to an operon for a regular F-type rotary ATPase. The molecular architecture of N-type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No-type ATPase and investigated the...
متن کاملScientific Report Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei
The genome of the highly infectious bacterium Burkholderia pseudomallei harbors an atp operon that encodes an N-type rotary ATPase, in addition to an operon for a regular F-type rotary ATPase. The molecular architecture of N-type ATPases is unknown and their biochemical properties and cellular functions are largely unexplored. We studied the B. pseudomallei N1No-type ATPase and investigated the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 83 4 شماره
صفحات -
تاریخ انتشار 2015